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Exponential Distribution

The exponential distribution is the base distribution
for survival analysis.

The distribution has a constant hazard λ

The mean survival time is λ−1
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f (t) = λe−λt

ln(f (t)) = lnλ− λt
F (t) = 1− e−λt

S(t) = e−λt

ln(S(t)) = −λt

h(t) = − d

dt
ln(S(t))

= − d

dt
(−λt)

= λ

David M. Rocke Parametric Survival Models May 20, 2021 3 / 16



Weibull Distribution

Using the Kalbfleisch and Prentice (2002) notation

f (t) = λp(λt)p−1e−(λt)
p

h(t) = λp(λt)p−1

S(t) = e−(λt)
p

When p = 1 this is the exponential. When p > 1 the
hazard is increasing and when p < 1 the hazard is
decreasing. This provides more flexibility than the
exponential.
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Exponential Regression

For each subject i define a linear predictor

η = β0 + β1x1 + · · ·+ βpxp
h(t|covariates) = eη

We let the linear predictor have a constant term and
when there are no additional predictors the hazard is
λ = exp(β0). This has a log link as in a generalized
linear model. Since the hazard does not depend on t, the
hazards are (trivially) proportional.
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Accelerated Failure Time

Suppose that Si(t) = S0(tθi) where θi = exp(ηi) and
ηi = β1x1 + · · ·+ βpxp. This is called an accelerated
failure time model because covariates cause uniform
acceleration (or slowing) of failure times. If the base
distribution is exponential with parameter λ then

Si(t) = e−λtθi

which is an exponential model with base hazard
multiplied by θi , which is also the proportional hazards
model.
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Accelerated Failure Time

In terms of the log survival time Y = ln(T ) the model
can be written as

Y = α− η + W

α = − ln(λ)

where W has the extreme value distribution. The
estimated parameter λ is the intercept and the other
coefficients are those of η, which will be the opposite
sign of those for coxph.
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Accelerated Failure Time

For a Weibull distribution, the hazard function and the
survival function are

h(t) = λp(λt)p−1

S(t) = e−(λt)
p

We can construct a proportional hazards model by using
a linear predictor ηi without constant term and letting
θi = eηi we have

h(t) = λp(λt)p−1θi
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Accelerated Failure Time

A distribution with h(t) = λp(λt)p−1θi is a Weibull

distribution with parameters λ∗ = λθ
1/p
i and p so the

survival function is

S∗(t) = e−(λ
∗t)p

= e−(λθ
1/pt)p

= S(tθ1/p)

so this is also an accelerated failure time model.
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Accelerated Failure Time

In terms of the log survival time Y = ln(T ) the model
can be written as

Y = α− ση + σW

α = − ln(λ)

σ = 1/p

where W has the extreme value distribution. The
estimated parameter λ is the intercept and the other
coefficients are those of η, which will be the opposite
sign of those for coxph.
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Accelerated Failure Time

These AFT models are log-linear, meaning that the linear
predictor has a log link. The exponential and the Weibull
are the only log-linear models that are simultaneously
proportional hazards models. Other parametric
distributions can be used for survival regression either as
a proportional hazards model or as an accelerated failure
time model.
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survreg {survival} R Documentation

Regression for a Parametric Survival Model

Description

Fit a parametric survival regression model.

These are location-scale models for an arbitrary transform of the time variable;

the most common cases use a log transformation, leading to

accelerated failure time models.

Usage

survreg(formula, data, weights, subset,

na.action, dist="weibull", init=NULL, scale=0,

control,parms=NULL,model=FALSE, x=FALSE,

y=TRUE, robust=FALSE, cluster, score=FALSE, ...)

Arguments

formula

a formula expression as for other regression models. The response is usually a

survival object as returned by the Surv function.

See the documentation for Surv, lm and formula for details.

data

a data frame in which to interpret the variables named in the formula,

weights or the subset arguments.
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> anderson.cox0 <- coxph(anderson.surv~treat,data=anderson)

> summary(anderson.cox0)

Call:

coxph(formula = anderson.surv ~ treat, data = anderson)

n= 42, number of events= 30

coef exp(coef) se(coef) z Pr(>|z|)

treatstandard 1.5721 4.8169 0.4124 3.812 0.000138 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

treatstandard 4.817 0.2076 2.147 10.81

Concordance= 0.69 (se = 0.041 )

Likelihood ratio test= 16.35 on 1 df, p=5e-05

Wald test = 14.53 on 1 df, p=1e-04

Score (logrank) test = 17.25 on 1 df, p=3e-05

David M. Rocke Parametric Survival Models May 20, 2021 13 / 16



> anderson.weib <- survreg(anderson.surv~treat,data=anderson)

> summary(anderson.weib)

Call:

survreg(formula = anderson.surv ~ treat, data = anderson)

Value Std. Error z p

(Intercept) 3.516 0.252 13.96 < 2e-16

treatstandard -1.267 0.311 -4.08 4.5e-05

Log(scale) -0.312 0.147 -2.12 0.034

Scale= 0.732

Weibull distribution

Loglik(model)= -106.6 Loglik(intercept only)= -116.4

Chisq= 19.65 on 1 degrees of freedom, p= 9.3e-06

Number of Newton-Raphson Iterations: 5

n= 42
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> anderson.exp <- survreg(anderson.surv~treat,data=anderson,dist="exp")

> summary(anderson.exp)

Call:

survreg(formula = anderson.surv ~ treat, data = anderson, dist = "exp")

Value Std. Error z p

(Intercept) 3.686 0.333 11.06 < 2e-16

treatstandard -1.527 0.398 -3.83 0.00013

Scale fixed at 1

Exponential distribution

Loglik(model)= -108.5 Loglik(intercept only)= -116.8

Chisq= 16.49 on 1 degrees of freedom, p= 4.9e-05

Number of Newton-Raphson Iterations: 4

n= 42

> plot(survfit(anderson.surv~treat,data=anderson),fun="cloglog")

If the cloglog plot survfit is linear, then a Weibull model may be ok.
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